Derivatives of 3-Amino-2-methylpyridine as BAZ2B Bromodomain Ligands: In Silico Discovery and in Crystallo Validation.

نویسندگان

  • Jean-Rémy Marchand
  • Graziano Lolli
  • Amedeo Caflisch
چکیده

The 3-amino-2-methylpyridine derivative 1 was identified as ligand of the BAZ2B bromodomain by automatic docking of nearly 500 compounds, selected on the basis of previous fragment hits. Hit expansion by two in silico approaches, pharmacophore search followed by docking, and substructure search resulted in five additional ligands. The predicted binding mode of the six 3-amino-2-methylpyridine derivatives was validated by protein crystallography. A small displacement of residues 1894-1899 of the ZA loop is observed for two of the six ligands. In all structures, the pyridine head is involved in a water-mediated hydrogen bond with the side chain of the conserved Tyr1901 while the 3-amino linker acts as hydrogen bond donor for the backbone carbonyl of Pro1888. Heterogeneous orientations are observed for the tail groups (i.e., the 3-amino substituents). The sulfonyl group in the tail of compounds 1 and 2 is involved in a hydrogen bond with the backbone amide of Asn1894.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovery of Inhibitors of Four Bromodomains by Fragment-Anchored Ligand Docking.

The high-throughput docking protocol called ALTA-VS (anchor-based library tailoring approach for virtual screening) was developed in 2005 for the efficient in silico screening of large libraries of compounds by preselection of only those molecules that have optimal fragments (anchors) for the protein target. Here we present an updated version of ALTA-VS with a broader range of potential applica...

متن کامل

“Fragment-Based Drug Design of Bromodomain Ligands”

Epigenetic mechnisms are essential for normal development and alterations of epigenetic processe are correlated with many human diseases, e.g., cancer. One of the important epigenetic modifications, acetylation of lysine, is mainly recognized by structurally conserved protein module bromodomains. Targeting bromodomains by small molecules is an emerging therapeutic strategy for cancer treatment....

متن کامل

Discovery of BAZ2A bromodomain ligands.

The bromodomain adjacent to zinc finger domain protein 2A (BAZ2A) is implicated in aggressive prostate cancer. The BAZ2A bromodomain is a challenging target because of the shallow pocket of its natural ligand, the acetylated side chain of lysine. Here, we report the successful screening of a library of nearly 1500 small molecules by high-throughput docking and force field-based binding-energy e...

متن کامل

High-Throughput Fragment Docking into the BAZ2B Bromodomain: Efficient in Silico Screening for X-Ray Crystallography.

Bromodomains are protein modules that bind to acetylated lysine side chains in histones and other proteins. The bromodomain adjacent to zinc finger domain protein 2B (BAZ2B) has been reported to be poorly druggable. Here, we screened an in-house library of 350 fragments by automatic docking to the BAZ2B bromodomain. The top 12 fragments according to the predicted binding energy were selected fo...

متن کامل

Targeting Low-Druggability Bromodomains: Fragment Based Screening and Inhibitor Design against the BAZ2B Bromodomain

Bromodomains are epigenetic reader domains that have recently become popular targets. In contrast to BET bromodomains, which have proven druggable, bromodomains from other regions of the phylogenetic tree have shallower pockets. We describe successful targeting of the challenging BAZ2B bromodomain using biophysical fragment screening and structure-based optimization of high ligand-efficiency fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medicinal chemistry

دوره 59 21  شماره 

صفحات  -

تاریخ انتشار 2016